モノグラフ No.1 アメリカの小型衛星開発の動向

目次

発刊にあたって まえがき

1.	は	じめに				 	i
	第1	章の参	考文献			 	3
2.	ア	メリカ	の小型衛星 …			 	4
	2-1.	東西	令戦の終結と軍	『の小型衛星…		 	4
		(i)	令戦の終結と湾	洋戦争		 	4
		(ii)	国防構想の質的]変化		 	5
		(iii)	- - - - - - - - - - - - - -	サイクル		 	7
	2-2.	Brill	iant Pebbles ··			 	8
	2-3.	DOD	の通信衛星と	技術開発衛星・		 	18
		(i){	新星開発の短期	間化		 	18
		(ii)	小型衛星用のロ	ケット開発…		 	19
		(iii)/	小型衛星の開発			 	20
		(iv)	先端要素技術の	開発		 	22
	2-4.	NAS	A の小型衛星・			 	22
		(i)	ゴダードの小型	見同衛星 SMI	EX	 	23
		(ii)	JPL の小型深宇	宇宙衛星		 	23
		(iii)I	DISCOVERY #	十画		 	25
		(i _V)]	NASA の小型律	5星技術への取	り組み方・	 	27
第	,2章	この参考	文献			 	31
3.	ア	メリカ	の小型衛星技術	วิ		 	33
	3-1.	通信:	系			 	35
		(i)	マイクロ波及ひ	ディジタル素	子	 	35
		(ii)	アンテナ			 	36
		(iii)I	Ka 帯の通信技術	術		 	38
		(iv)	· · · · · · · · · · · · · · · · · · ·			 	40
	3-2.	トラ	ンスポンダー…			 	42
		(i)	JPL におけるト	・ランスポンダ	一の開発・	 	43
		(ii)	1米のトランス	ポンダーの比	龄	 	

	(iii)ディジタルトランスポンダー	$\cdots \cdot 47$
3-3.	深宇宙ネットワーク (DSN)	49
	(i)STDN の閉鎖と DSN ······	49
	(ii)周回衛星の TDRS 利用と DSN 局受信 ······	50
	(iii)アンテナのアレイ化 ······	51
	(iv)Ka 帯の利用	····· 52
3-4.	搭載計算機	·····53
	(i)汎用マイクロプロセッサ	·····53
	(ii)ディジタルシグナルプロセッサ ·····	60
	(iii)データレコーダ	61
3-5.	パッケージ技術	67
	(i)表面実装技術 ······	68
	(ii)次世代の実装技術	·····73
	(iii)マイクロ波モノリシック IC	$\cdots 76$
	(iv)搭載機器の計装 ·····	$\cdots 77$
3-6.	電源系	81
	(i)太陽電池 ·····	81
	(ii)バッテリー ·····	83
	(iii)電力制御系 ······	86
	(iv)放射線同位元素電源	86
3-7.	姿勢制御系	89
	(i)慣性センサー ······	89
	(ii)光学センサー ······	90
	(iii)アクチュエータ ·····	93
3-8.	推進系	96
	(i)二液推進系 ······	96
	(ii)コールドガススラスター ······	103
	(iii)先進二液推進系 N ₂ H ₄ /C ₁ F ₅ ···································	104
	(iv)一般宇宙ミッションへの転用	106
	(v)固体推進系 ······	107
3-9.	構造/機構系	113
	(i)構造 ······	113
	(ii)機構	113
3-10.	マイクロテクノロジー	115
	(i)マイクロメカニクス ·····	116
	(ii)マイクロセンサー	116

	(iii)マイクロオプトニクス ······117
	(iv)マイクロロボット、ローバー117
3-11.	超小型載機器の宇宙実証ー CLEMENTINE 計画一 ·······119
3-12.	超小型搭載機器のコスト122
3-13.	DOD 関連技術に日本はアクセス出来るか? ······126
第3章	の参考文献128
4. P	くリカと日本の科学衛星のシステムとマネージメント131
4-1.	NASA の宇宙計画 · · · · · · · · · · · · · · · · · · ·
4-2.	JPL の大型衛星のシステムとマネージメント · · · · · · · 136
	(i)Class A ミッション ·······136
	(ii)マネージメント ······138
	(iii)コスト ······140
	(iv)JPL の惑星探査機の不具合と信頼性142
4-3.	アメリカの小型衛星のシステムとマネージメント150
	(i)航空機開発における"スカンクワーク" ·······150
	(ii)DOD の低価格衛星のマネージメント ·······151
	(iii)JPL の小型惑星探査機のマネージメント155
	(iv)コスト低減と信頼性の確保157
4-4.	日本の科学衛星のシステムとマネージメント160
	(i)日本の科学衛星計画の特徴 ······161
	(ii)マネージメント ······163
	(iii)信頼性 ······166
	(iv)コスト
第4章	の参考文献175
5. 日 2	xの科学衛星システムの高機能化小型化176
5-1.	"おおすみ"から 23 年の歩み176
5-2.	日本の衛星の高機能化小型化に向けて185
5-3.	宇宙研のプロジェクト"STRAIGHT"と高機能探査機研究センター設立…188
6. あと	<u>:</u> がき191
去口	100